

Appendix 3.9

TAG Worksheets

TAG Workbook: Noise

APPRAISAL - NOISE POLLUTION

Present value base year:	2010
Current year:	2014
Proposal Opening Year:	2018
Average Household Size:	2.4
Project (Road or Rail):	Road

	With schem	<4 5	45- 47.9	48- 50.9	51- 53.9	54- 56.9	57- 59.9	60- 62.9	63- 65.9	66- 68.9	69- 71.9	72- 74.9	75- 77.9	78- 80.9	81
Withou t scheme	e	<u> </u>	47.9	30.9	33.9	30.9	39.9	02.9	03.9	08.9	/1.9	/4.9	11.9	80.9	
<45		32	16	0	0	0	0	0	0	0	0	0	0	0	0
45-47.9		8	526	36	0	0	0	0	0	0	0	0	0	0	0
48-50.9		0	18	329	45	0	0	0	0	0	0	0	0	0	0
51-53.9		0	0	20	235	45	0	0	0	0	0	0	0	0	0
54-56.9		0	0	0	17	84	7	0	0	0	0	0	0	0	0
57-59.9		0	0	0	0	17	83	16	0	0	0	0	0	0	0
60-62.9		0	0	0	0	3	3	85	42	0	0	0	0	0	0
63-65.9		0	0	0	0	0	1	15	74	3	0	0	0	0	0
66-68.9		0	0	0	0	0	0	0	19	290	52	0	0	0	0
59-71.9		0	0	0	0	0	0	5	10	42	182	0	0	0	0
72-74.9		0	0	0	0	0	0	0	0	0	14	25	0	0	0
75-77.9		0	0	0	0	0	0	0	0	0	0	0	0	0	0
78-80.9		0	0	0	0	0	0	0	0	0	0	0	0	0	0
81+		0	0	0	0	0	0	0	0	0	0	0	0	0	

	With scheme	<45	45- 47.9	48- 50.9	51- 53.9	54- 56.9	57- 59.9	60- 62.9	63- 65.9	66- 68.9	69- 71.9	72- 74.9	75- 77.9	78- 80.9	81+
Without scheme															
<45	-	437	26	0	0	0	0	0	0	0	0	0	0	0	0
45-47.9		3	486	62	0	0	0	0	0	0	0	0	0	0	0
48-50.9		0	24	350	15	0	0	0	0	0	0	0	0	0	0
51-53.9		0	4	16	242	37	2	0	0	0	0	0	0	0	0
54-56.9	_	0	0	6	15	251	67	0	0	0	0	0	0	0	0
57-59.9	_	0	0	0	6	14	88	6	0	0	0	0	0	0	0
60-62.9		0	0	0	0	0	5	100	33	0	0	0	0	0	0
63-65.9		0	0	0	0	2	2	25	100	19	0	0	0	0	0
66-68.9	_	0	0	0	0	0	1	0	8	311	57	0	0	0	0
69-71.9		0	0	0	0	0	0	0	16	16	204	3	0	0	0
72-74.9	_	0	0	0	0	0	0	0	0	0	6	34	2	0	0
75-77.9	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0
78-80.9	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31+		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Prese	nt Value of	Noise	of Prop	osal			-£399,6	548		*positive			et benefi	t	
(60 Year l	Period)														
Estimated	l Populatio	n Anno	yed (Do	-Minimu	ım):		1039								
Estimated	l Population	n Anno	ved (Do	-Someth	ing):		1051								

Net Noise Annoyance Change in 15th Year After Opening (no. of people):

*positive value reflects an **increase** in people annoyed by noise

Air Quality Valuation Summa	ary Worksheet					
Stafford						
Air Quality appraisal						
Summary Assessment						
			Central estimate	Lower estimate	Upper estimate	
Present Value of change in	PM ₁₀ concentr	ations:	£1,540,705	£806,712	£1,749,231	
Present Value of change in	NO _x emissions) }:	£6,662	£5,190	£7,568	
Total value of change in air	quality: £NPV		£1,547,366	£811,902	£1,756,800	
Note: All Monetary Values are in 201	0 Prices and Value	es. Positive values	reflect a net benefit (ie	e air quality improven	nent)	
Quantitative Assessment						
"Net Total Route Assessme	nt" (opening y	ear) for PM ₁₀ :	32			
Change in NO _X emissions o	ver 60 year apı	praisal period:	-11			
·						

2018 Results

NO ₂ , SUMMARY OF ROUTES:	0-50m	50-100m	100-150m	150-200m	0-200m
THE AGGREGATED TABLE	(i)	(ii)	(iii)	(iv)	(v=i+ii+iii+iv)
Total properties across all routes (min)	983	785	771	740	3279
Total properties across all routes (some)	978	787	773	741	3279
Do-minimum NO ₂ assessment					Total assessment NO ₂ (I):
across all routes	19190.15	13716.24	12797.05	12272.87	57976.32
Do-something NO ₂ assessment					Total assessment NO ₂ (II):
across all routes	19239.04	13763.00	12842.02	12295.51	58139.58
Net total assessment for NO ₂ , all routes (II-I)					163.26
Number of properties with an improvement					762
Number of properties with no change					0
Number of properties with a deterioration					2517

PM10, SUMMARY OF ROUTES:	0-50m	50-100m	100-150m	150-200m	0-200m
THE AGGREGATED TABLE	(i)	(ii)	(iii)	(iv)	(v=i+ii+iii+iv)
Total properties across all routes (min)	983	785	771	740	3279
Total properties across all routes (some)	978	787	773	741	3279
Do-minimum PM10 assessment					Total assessment PM10 (I):
across all routes	15205.43	11846.21	11465.58	11024.49	49541.70
Do-something PM10 assessment					Total assessment PM10 (II):
across all routes	15157.05	11878.72	11497.48	11040.49	49573.74
Net total assessment for PM10, all routes (II-I)					32.04
Number of properties with an improvement					762
Number of properties with no change					0
Number of properties with a deterioration					2517

2025 Results

PM10, SUMMARY OF ROUTES:	0-50m	50-100m	100-150m	150-200m	0-200m
THE AGGREGATED TABLE	(i)	(ii)	(iii)	(iv)	(v=i+ii+iii+iv)
Total properties across all routes (min)	1064	839	771	740	3414
Total properties across all routes (some)	1059	787	773	741	3360
Do-minimum PM10 assessment					Total assessment PM10 (I):
across all routes	15990.49	12253.50	11446.29	10663.73	50354.01
Do-something PM10 assessment					Total assessment PM10 (II):
across all routes	16146.31	11543.99	11290.24	10824.70	49805.24
Net total assessment for PM10, all routes (II-I)					-548.78
Number of properties with an improvement					1394
Number of properties with no change					0
Number of properties with a deterioration					1966

Worksheet 2 - Regional Air Quality

Option name Stafford Opening year 2018 Forecast year 2025

		Without schem	eme With scheme C			Change in emi	ssions
		Opening year	Forecast year	Opening year	Forecast year	Opening year	Forecast year
NOx emissions in	Areas not exceeding limit values	14.7	8.8	14.0	8.6	-0.7	-0.1
tonnes per year	Areas exceeding limit values	0.0	0.0	0.0	0.0	0.0	0.0

	limit values	0.0	0.0	0.0	0.0	0.0	0.0	
Qualita	ative comments:							
	Data Sources:							

Proposal Name:	Stafford Western	Access Road				
(1)/al D	. W	0040				
Present Value Bas	e Year	2010				
Current Year		2014				
Proposal Opening	year:	2018				
Project (Road/Rail	or Road and Rail):	Road				
overall Assessme	nt Score:	1	1	·		
Weran Assessmen	it ocore.					
let Present Value	of Carbon dioxide	Emissions of Pr	oposal (£):		-£32,886 *positive value reflects a ne	et .
60 Year Period)					benefit (i.e. CO2E emission reduction)	
Quantitative Asses	ssment:					
		over 60 year app	praisal period	(tonnes):	527	1
Change in Carbon	dioxide Emissions me' and 'without sche		praisal period	(tonnes):	527	
Change in Carbon between 'with sche	dioxide Emissions		praisal period	(tonnes):	527	
Change in Carbon between 'with sche Of which Traded	dioxide Emissions me' and 'without sche	eme' scenarios)		(tonnes):	0	
Change in Carbon between 'with schel Of which Traded Change in Carbon	dioxide Emissions	eme' scenarios) in Opening year		(tonnes):		
Change in Carbon between 'with schel Of which Traded Change in Carbon	dioxide Emissions me' and 'without sche dioxide Emissions	eme' scenarios) in Opening year		(tonnes):	0	
Change in Carbon between 'with sche Of which Traded Change in Carbon between 'with sche	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche	eme' scenarios) in Opening year		(tonnes):	0	
Change in Carbon between 'with sche Of which Traded Change in Carbon between 'with sche	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche	in Opening year eme' scenarios)	(tonnes):		-210	
Change in Carbon between 'with sche Of which Traded Change in Carbon between 'with sche Qualitative Comme Emissions were ca	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche ents: alculated using the E nt only non traded ve	in Opening year eme' scenarios)	Foolkit v6.01 roxide emission	ather than	0 -210 ГИВА.	
Change in Carbon between 'with sche Of which Traded Change in Carbon between 'with sche Qualitative Comme Emissions were ca For this assessme Change in emissio	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche ents: alculated using the E	in Opening year eme' scenarios) imission Factor chicle carbon dic CO2 = -0.00008	Foolkit v6.01 roxide emission	ather than	0 -210 ГИВА.	
Change in Carbon between 'with sche Change in Carbon between 'with sche Qualitative Comme Emissions were ca for this assessme Change in emissio Change in emissio	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche ents: alculated using the E nt only non traded ve ans 2018-2022 in Mt	in Opening year eme' scenarios) Emission Factor chicle carbon dic CO2 = -0.0008 CO2 = -0.0003	Foolkit v6.01 roxide emission	ather than as have been	O -210 TUBA. en determined.	
Change in Carbon between 'with sche Change in Carbon between 'with sche Qualitative Comme Emissions were ca For this assessme Change in emissio Change in emissio	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche ents: alculated using the E nt only non traded ve ins 2018-2022 in Mt ins 2023-2027 in Mt	in Opening year eme' scenarios) Emission Factor chicle carbon dic CO2 = -0.0008 CO2 = -0.0003	Foolkit v6.01 roxide emission	ather than as have been	O -210 TUBA. en determined.	
Change in Carbon between 'with sche Change in Carbon between 'with sche Qualitative Comme Emissions were ca for this assessme Change in emissio Change in emissio	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche ents: alculated using the E nt only non traded ve ins 2018-2022 in Mt ins 2023-2027 in Mt	in Opening year eme' scenarios) Emission Factor chicle carbon dic CO2 = -0.0008 CO2 = -0.0003	Foolkit v6.01 roxide emission	ather than as have been	O -210 TUBA. en determined.	
Of which Traded Change in Carbon (between 'with sche Qualitative Comme Emissions were ca For this assessme Change in emissio Change in emissio	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche ents: alculated using the E nt only non traded ve ans 2018-2022 in Mt ans 2023-2027 in Mt ans over 60 year app	in Opening year eme' scenarios) Emission Factor chicle carbon dic CO2 = -0.0008 CO2 = -0.0003	Foolkit v6.01 roxide emission	ather than as have been	O -210 TUBA. en determined.	
Change in Carbon between 'with sche Change in Carbon between 'with sche Emissions were cate or this assessme Change in emissio Change in e	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche ents: alculated using the E nt only non traded ve ans 2018-2022 in Mt ans 2023-2027 in Mt ans over 60 year app	in Opening year eme' scenarios) imission Factor chicle carbon dic CO2 = -0.0008 CO2 = -0.0003 oraisal period 20	Foolkit v6.01 roxide emission	ather than as have been	O -210 TUBA. en determined.	
Change in Carbon between 'with sche Of which Traded Change in Carbon between 'with sche Qualitative Comme Emissions were ca For this assessme Change in emissio Change in emissio Change in emissio	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche ents: alculated using the Ent only non traded vens 2018-2022 in Mt ins 2023-2027 in Mt ins over 60 year app	in Opening year eme' scenarios) imission Factor chicle carbon dic CO2 = -0.0008 CO2 = -0.0003 oraisal period 20	Foolkit v6.01 roxide emission	ather than as have been	O -210 TUBA. en determined.	
Change in Carbon between 'with sche Of which Traded Change in Carbon between 'with sche Qualitative Comme Emissions were ca For this assessme Change in emissio	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche ents: alculated using the Ent only non traded vens 2018-2022 in Mt ans 2023-2027 in Mt ans over 60 year app	in Opening year eme' scenarios) imission Factor chicle carbon dic CO2 = -0.0008 CO2 = -0.0003 oraisal period 20	Foolkit v6.01 moxide emission	ather than as have bee	UBA. en determined.	77
Change in Carbon between 'with scheen 'with	dioxide Emissions me' and 'without sche dioxide Emissions me' and 'without sche ents: alculated using the Ent only non traded vens 2018-2022 in Mt ins 2023-2027 in Mt ins over 60 year app	in Opening year eme' scenarios) imission Factor chicle carbon dic cO2 = -0.0008 cO2 = -0.0003 oraisal period 20 scenario analyse	Foolkit v6.01 reported to the control of the control of Proported to the control of Pr	ather than ns have been at the first had at the first have been at the first had at the first had at the first had at the first had at th	O -210 TUBA. en determined.	

Data Sources:

TAG Worksheet: Landscape

Features	Description	Scale it matters	Rarity	Importance	Substitutability	Impact	Additional* Mitigation
Pattern	Low lying marshland subdivided by water courses, and areas of scrub and damp woodland. Enclosure provided by woodland and scrub and surrounding urban development.	local	Locally uncommon	High importance at local level	Internal pattern 20 - 50 years; 50 - 100 years to replace mature trees and woodland.	Loss of wet woodland is compensated in the scheme, and additional planting provides landscape enhancement. Slight beneficial	Ü
	Beyond the marshland, to the north, landscape is open rolling pastoral with irregular field pattern of low hedges. Occasional over-grown hedges limit views.						
Tranquillity	Sense of separation from urban surroundings, but intrusion from local road and rail noise.	Local	common	Low importance	N/A	Neutral	
Cultural	Marsh with drainage control, relic water meadows. Traditional field pattern evident. Network of paths provide for informal recreation.	Local	Uncommon	High importance at local level	10-15 years to develop replacement marsh habitat and informal recreation area of similar character.	New 'nature conservation' amenity area created to north east of SSSI with interpretation. New amenity area north of Castletown. Moderate beneficial	
Landcover	Doxey Marshes SSSi; semi natural reedbeds and marshland with damp woodland managed for nature conservation. Beyond marshes pastoral small irregular fields bounded by hedgerows beginning to break down/	Local, regional	Rare	High importance at national level	10-15 years	Neutral	

Features	Description	Scale it matters	Rarity	Importance	Substitutability	Impact	Additional* Mitigation
Summary of character	Ancient Clay Farmlands in the Staffordshire Plain. Landscape quality is high; policy objective is landscape maintenance: substantial emphasis should be placed on ensuring development blends unobtrusively into the landscape. Influenced by adjacent development, but currently well contained by characteristic vegetation on urban fringe.	local	Uncommon	Medium importance at local level		Neutral	Mugation

Reference Source(s): Planning for Landscape Change – Supplementary Planning Guidance to the Staffordshire and Stoke on Trent Structure Plan, 1996-2011.

Summary assessment score: Slight beneficial

TAG Worksheet: Townscape

Features	Description	Scale at which it matters	Rarity	Importance	Substitutability	Changes in do minimum	Impact	Additional Mitigation
Layout	An industrial estate of loose grain, comprising large, single use units with associated parking/ servicing areas. (map ref 1) Open, surface car parking areas. (map ref 5) Very close grain terraced houses fronting Doxey Rd. Traditional 'grid iron' street pattern. (map ref 4) Remnant railway structures/ routes. (map ref 3) Looser grain terraced houses are set back off Spruce Way. Modern cul-desac road layout. (map ref 2) Large footprint, purpose-built works and office buildings. (map ref 6)	Majority local. Castletown and Unicorn Works are local – sub- regional. (map ref 1)	Locally – subregionally distinctive.	Elements of local – sub-regional importance.	Existing areas of adjacent street layout are unaffected by this route. It would be difficult to replicate historic street patterns, given modern highways standards.	Majority of area is unlikely to change in the foreseeable future. However, the former Unicorn Works is a development site.	Proposed route links various elements of existing roadway (through the industrial estate, alongside the surface car park, along Doxey Rd then to Martin Drive). Greatest impacts are on the loosest grained areas – namely, the former/ present industrial areas.	Attention to detailed design where the proposed route connects with the existing highway network.
Density & Mix	Townscape is mostly 'zoned' into single uses. Lowest density in industrial areas (map refl); highest density in traditional housing area (of Castletown) (map	Local	Common	Low	Unaffected		Largely unaffected, given the accepted redevelopment potential of the former Unicorn Works site.	

	ref 4).						
Scale	Large scale industrial/ warehouse buildings (map ref 1). Modern, 3-storey, 'town house' terraced properties (map ref 2). Intimate, 2 storey, former workers' 'terraced cottages' (map ref 4).	Local	Common Some local distinction.	Some local importance.	Unaffected	Largely unaffected. Only demolition of buildings will occur on the former Unicorn Works site.	
Appearance	Modern industrial buildings are indistinctive. Modern housing is indistinctive. Former Unicorn Works is locally distinctive (map ref 1). Terraced housing in Castletown is locally distinctive (map ref 4). Existing and remnant railway structures add local distinction (map ref 3).	Local – sub-regional.	Some local distinction.	Some local – subregional importance.	Edges of existing townscape are affected, for as long as the route is in existence.	Proposed position of new traffic island, away from the edge of Castletown, reduces the potential physical impact on the townscape edge. Demolition of former Unicorn Works office is a physical impact.	Indigenous tree and shrub planting to ameliorate the impact of the road, particularly on the open edges of the townscape, such as alongside Doxey Marshes (adjacent the new traffic island) and towards the connection with Martin Drive.
Human Interaction	Some pedestrian activity between car parks and industrial/ retail warehouse units (map ref 5 and 6). Normal domestic interactions within housing areas – possibly more in Castletown due to	Local	Common	Low	Pedestrian movements between car parking and uses will be affected, but should be able to be adapted/ adjusted.	Will redefine some peripheral pedestrian movement patterns associated with car parks. Potentially increases severance between new residential areas	Design and frequency of pedestrian crossing points, in order to perpetuate existing pedestrian movements/ desire lines.

_	density.						either side of Doxey Rd.	
Cultural	Castletown is an architectural and cultural asset. Parts of the Unicorn Works, primarily the former office buildings, are also of notable architectural value. Remnant railway features provide local enrichment.	Local	Some local – subregional distinction.	Some local, possibly sub- regional, importance.	Historic environment is a non-renewable resource. Former Unicorn Works will be permanently affected. There will be minimal permanent impact on the north eastern aspect of Castletown.		Demolition of former Unicorn Works office.	
Land Use	Industrial Commercial Residential Car parking	Local	Common	Low	Open/ circulatory areas can be adjusted.		Minimal	
Summary of Character	A series of 'single use' townscape areas, of varying quality. Most valuable are the traditional, historical areas, existing and remnant.	Local – sub- regional.	Mainly common. Some local – subregional rarity in remaining historic townscape elements.	Mainly low. Some local and sub-regional importance.	n/a	Low anticipated level of change, overall, excepting the potential redevelopment of the former Unicorn Works.	Low impact overall, given extant permissions/ intentions.	

Reference sources:

Primarily site observation, but also Staffordshire CC Historic Environment Record. (Cross-referenced with Environment Landscape assessment.)

Summary Assessment score:

Minor negative.

Qualitative comments:

This option runs along existing highway and open car park. Where it deviates from this, it creates additional space between the proposed routeway and the edge of Castletown, providing the opportunity for amelioration.

TAG Worksheet: Historic Environment

Part 1		Part 2			Part 3		
Feature	Description	Scale it matters	Significance	Rarity	Impact		
Form	This option indirectly impacts upon the Stafford Foregate Conservation Area (CA No.137).	Local.	National	This Conservation Area represents a unique historic character area within Stafford.	Concerns were raised regarding the potential slight adverse impact (vibration, noise light and vehicle pollution) an increase in traffic numbers could have upon the character of the nearby Foregate Conservation Area (CA No.137).		
					A traffic study undertaken by WS Atkins indicates that the new route will result in a reduction in traffic entering from the west. It is anticipated that if this reduction is realised the scheme will have a neutral impact upon the Conservation Area.		
	The route clips the corner of a series of well preserved 19 th century water meadow (PRN 52113) which lie within the Doxey Marsh SSSI.	As above.	Local	Moderately rare taking into consideration their survival and condition.	The course of the route will clip the corner of the water meadow system and will bisect the lines of the two railways. The course of the route		
	The routes bisects two dismantled railway lines; the Stafford & Uttoxeter and the Stafford to Wellington Railways (PRN 50735	As above.	As above.	Not rare.	may also impact locally upon any surviving palaeoenvironmental remains.		
	& 50655).	As above.	As above.	Unknown.			
	It is possible that palaeoenvironmental remains are present within the impacted area.						

Part 1		Part 2	Part 2				
Survival	The boundary of the current Conservation Area is recorded on the Historic Environment record. This boundary may change during future Conservation Area Appraisals.	The historic buildings within this Conservation Area are important elements in forming its unique character.	National	Many of the historic built assets can be found elsewhere although the Stafford Infirmary building is unique within the town.	The route will not physically affect the survival of historic character elements of the Conservation Area.		
	The water meadows survive in good condition although along the proposed route all earthworks have been removed.	Local.	Undesignated.	Upstanding remains do not survive in this area.	It is calculated that the overall impact of the route will be neutral.		
	The line of the Stafford & Uttoxeter railway survives as a cycle path while the line of the Stafford to Wellington Railway does not survive as a visible feature.	Local.	Undesignated.	The line of the Stafford to Uttoxeter railway survives as a track although it will not be impacted by this option.	Impact will be neutral upon both railway lines.		
	Taking into consideration low lying and water logged nature of Doxey marshes it is likely that palaeoennvironmental remains will survive.	Potentially nationally important.	Potentially nationally important.	Similar remains have been recovered from elsewhere in Stafford	The route will have a localised impact upon any palaeoenvironmental remains present.		
Condition	The character of the Stafford Foregate Conservation Area has been impacted by twentieth century developments including the construction of a commercial retail park. Elements do survive including the hospital and areas of nineteenth century terraced housing and factory buildings.	Local.	National.	N/A.	The route will not physically affect the condition of historic character elements of the Conservation Area. The general impacts may be through increases in noise levels, light pollution and vehicle pollution.		
	This option will not impact upon the form of the surviving water meadow system.	Local.	Undesignated.	N/A.	The route will not impact upon upstanding remains of the water meadow system. Impact will be neutral.		
	The railway lines survive in relatively poor condition.	Local.	Undesignated.	Not rare.	The overall condition on these two historic assets will be neutral.		
	No palaeoenvironmental work has been conducted in this area to test the potential condition of surviving remains.	Potentially nationally important.	Undesignated.	Unknown.	Minimal direct impact. However, there could be more widespread indirect impacts in the area of the route through changes to the water table.		

Part 1		Part 2			Part 3		
Complexity	The character of the Conservation Area is dominated by a mixture of nineteenth and twentieth century development. No earlier architectural features are present within the area.	National.	Designated nationally important as a Conservation Area.	N/A.	N/A.		
	From available documentary evidence these features represent single phase construction episodes.	Local.	Undesignated.	N/A.	The route will interrupt the water meadow system and could potential impact upon the legibility of this feature in the landscape.		
	The two railway lines are part of the transport network for Stafford but do not add significantly to the historic character of the area.	Local.	Undesignated.	Not rare.	Minimal impact.		
	The HER suggests low potential for archaeological remains to be associated with palaeoenvironmental remains.	Not known.	Undesignated.	N/A.	N/A.		
Context	The Stafford Foregate Conservation Area sits within a broader historic townscape as identified in the Stafford Extensive Urban Survey. The area originated as 12 th /13 th century suburban expansion but is now characterised by 19 th /20 th century development.	National.	Designated nationally important as a Conservation Area.	N/A.	The route will impact upon the context of the Conservation Area. However, the degree of impact will be minimal and will extend over what traditionally has functioned as agricultural land.		
	The water meadows sit with Doxey marshes. Originally these agricultural features sat hinterland of Stafford. Currently they are surrounded by residential, industrial and commercial development.	The water meadow exists as a landscape feature. However, much of its context has been lost through 20 th century development.	Undesignated.	Not rare.	There are no recorded historic features directly associated with the surviving water meadows. The route would therefore not impact upon the context of the water meadows.		
	The railways help to define the nineteenth century townscape. While they have been dismantled their routes have influenced the wider development of the town in this area.	Local.	Undesignated.	Not rare.	The extant railway line survives within a significantly altered landscape; however elements do survive.		
	The HER suggests low potential for archaeological remains to be associated with palaeoenvironmental remains.	Potentially nationally important.	Undesignated.	Unknown.	The HER suggests low potential for associated archaeological remains.		

Part 1		Part 2	Part 3		
Period	The historic assets are largely associated with 19 th century activity. Palaeoenvironmental remains will potentially span a much greater period.	Local.	Undesignated	Not rare throughout the county.	N/A

Reference Source(s): Staffordshire County Council Historic Environment Record, the Stafford Historic Character Assessment, the Staffordshire Water Meadows Survey and the Stafford Extensive Urban Survey.

Summary assessment score: Slight negative adverse effect.

Qualitative comments: **Option 3** will impact upon a range of largely 19th century historic assets; only one of which is designated (ie the Stafford Foregate Conservation Area). However, the WS Atkins traffic assessment suggests that the proposed scheme will result in a reduction in traffic numbers entering the Conservation Area from the West. It is therefore considered that the ipact of the proposed scheme on the Conservation Area will be neutral. Option 3 will clip the southern extent of the water meadow system as identified on the HER although it is unlikely that archaeological remains of the water meadow survive within this area. There still remains the potential for the route to impact upon surviving palaeoenvironmental remains, prehistoric trackways etc.

Worksheet 1 Environment: Biodiversity - Plan Level

Scheme / option: Stafford Western Access Route

Area	Description of feature / attribute	Scale (at which attribute matters)	Importance (of attribute)	Trend (in relation to target)	Biodiversi ty and earth heritage value	Magnitude of impact	Assessm ent score
Doxey & Tillington Marshes SSSI Map Ref 1	An extensive area of low-lying damp grassland, marsh, swamp and pools in the flood plain of the River Sow, reaching almost into the centre of Stafford. The site is of ornithological importance all year round and has special significance for the numbers of breeding snipe <i>Gallinago gallinago</i> . This species has seriously declined in lowland Britain through land drainage and the population at Doxey and Tillington Marshes is the largest in lowland Staffordshire. There is also one of the largest areas of reed sweet-grass <i>Glyceria</i> For full citation see attached document <i>maxima</i> swamp in the county. Records of several protected species including otter, bats, badger, kingfisher common toad. Hydrology is a key factor in maintenance of SSSI condition.	National	Very High – for nationally rare habitat, breeding and wintering bird assemblage	98.8% meets PSA target 22.27% favourable 76.61& unfavour- able recovering 1.12% destroyed	High	Minor negative Potential to be neutral by inclusion of restoration of already destroyed area and adjacent habitat map ref 2, 3 & 4	Neutral
Doxey Marshes Nature Reserve Map Ref 1	As above. A wardened nature reserve with dedicated staff. Many thousands of visitors per year including high educational value. Access to wildlife close to residential areas.	Regional	Very High – close to residential area, "flagship" nature reserve	Unknown	High	Potential to be positive by inclusion of restoration of adjacent habitat and link to recreational routes Map ref 3	Slight beneficial
Protected and Biodiversity Action Plan species	Records for otter, water vole, bats, badger, kingfisher common toad, reptiles, breeding birds	County	High – rare to find a site that supports such a wide assemblage	Mixed, depending on species	High	Minor negative, potential to be neutral through mitigation	Neutral
UK & Staffordshire Biodiversity Action Plan habitat River Map ref 5	River Sow, relatively natural river profile. East bank lined by mature willows and poplars. West bank by a few scattered young willow. Nettle dominated with Himalayan balsam frequent at river edge, other species include branched bur-reed, white water lily, reed sweet-grass and reed canary-grass. River narrow, water clear, bottom silty.	County	High – one of the County's larger waterways	Improving	High	Minor negative, potential to be neutral	Slight adverse/ Neutral
Doxey Drain (Railway sidings to Martin Drive) Map ref 6	Area of mixed scrub, tall ruderals, ditches, marsh and rough grassland habitat along Doxey Drain. No habitat or species information available, requires survey.	Local	Needs survey to allow assessment	Needs survey to allow assessment	Needs survey to allow assess- ment	Major negative	Slight adverse?

$Reference\ Source(s): \underline{_Natural\ England\ \underline{http://www.sssi.naturalengland.org.uk/Special/sssi/sssi_details.cfm?sssi_id=1001006}\ Staffordshire\ Biodiversity\ Action$
Plan, http://www.sbap.org.uk/ Staffordshire Ecological Record http://www.sbap.org.uk/ Walkover survey Ali Glaisher August 2009 site meeting with
Grady Mclean Natural England & Kate Dewey Staffordshire Wildlife Trust March 19 th 2010 _
Summary assessment score:Neutral
Qualitative comments: The Doxey & Tillington Marshes SSSI is unique in quality and extent of habitat to the West Midlands Region. The Wildlife Trust Nature
Reserve is unusual in its proximity and accessibility to residential communities. The likely extent of impact on the SSSI has been assessed by Natural
England who has advised on mitigation and compensation requirements. This will be achieved through restoration of the sections of the car and lorry parks to
the west of the road route. The destroyed SSSI area will be restored to wetland habitats while the area outside the SSSI will be restored to grassland
habitats. Construction methods will minimise impacts on the SSSI and include restoration of affected habitat adjacent to Doxey Road. There will be inevitable
loss of habitat of probable local importance to the western stretch of the road between the railway sidings and Martin Drive. There may be protected species
issues, including otters, badgers, bats, water vole, amphibians, reptiles and birds. Mitigation of impacts on protected and Biodiversity Action Plan priority
species will be included in the scheme. Survey and assessment will be carried out, including hydrological assessment, to inform design, mitigation and
compensation. Japanese knotweed is present near Doxey Road. This will be treated appropriately.

Construction Impacts including Mitigation

Study Area Description (junction)	Feature	Potential Impacts	Attributes/ Services	Quality*	Scale	Rarity	Substitutability	Importance	Magnitude	Significance
	Doxey Drain	Reduction in water quality	Local drain, feeds in to larger river downstream	Fair/Good	Local	Medium	Low	Medium	Minor	Insignificant
	·	Change in flow conditions	Surface water drain and flood plain	Fair	Local	Medium	Low	Medium	Minor	Insignificant
	Tillington	Reduction in water quality	Biodiversity and aesthetics	Unknown	Local	Low	Medium	Medium	Minor	Insignificant
Stafford	Tillington Drain	Change in flow conditions	Surface water drain and flood plain	Unknown	Local	Low	Medium	Medium	Minor	Insignificant
Western Access Improvement Road Green Option	Doxey and Tillington Marshes SSSI and watercourse within SSSI	Changes in groundwater and surface water flow within the SSSI. and flood risk	Flow regime and flooding	Good	National	High	Low	Very High	Negligible	Low Significance
Construction Impacts		Changes in water quality and habitat of the SSSI	Biodiversity and aesthetics	Good	National	High	Low	Very High	Negligible	Low Significance
including Mitigation		Reduction in water quality	Biodiversity and aesthetics	Good/Fair	Regional	Medium	Low	Medium	Minor	Insignificant
	River Sow	Change in flow conditions	Large water course and flood plain	Good/Fair	Regional	Medium	Low	Medium	Minor	Insignificant
	Groundwator	Reduction in the water quality	Groundwater contamination of base flow to Doxey Drain.	Unknown	Local	Low	Medium	Low	Moderate	Insignificant
	Groundwater	Reduction in in in in infiltration and flow of groundwater	Minor contribution of base flow to water courses	Medium	Local	Low	Medium	Low	Minor	Insignificant

Operational Impacts with Mitigation

Study Area Description (junction)	Feature	Potential Impacts	Attributes/ Services	Quality*	Scale	Rarity	Substitutability	Importance	Magnitude	Significance
	Doxey Drain	Reduction in water quality	Local drain, feeds in to larger river downstream	Fair/Good	Local	Medium	Low	Medium	Minor	Insignificant
		Change in flow conditions	Surface water drain and flood plain	Fair	Local	Medium	Low	Medium	Minor	Insignificant
	Tillington Drain	Reduction in water quality	Biodiversity and aesthetics	Unknown	Local	Low	Medium	Medium	Minor	Insignificant
		Change in flow conditions	Surface water drain and flood plain	Unknown	Local	Low	Medium	Medium	Minor	Insignificant
Stafford Western	Doxey and Tillington Marshes SSSI and watercourse within SSSI	Change to surface and groundwater flow (flood risk)	Flow regime	Cood	National	High	Low	Van dinh	Negligible	Low Significance
Access Improvement Road Green		Viaduct foundations change groundwater flow	and flooding	Good	National	High	LOW	Very High	Negligible	Low Significance
Option Operational		Changes in water quality and habitat of the SSSI	Biodiversity and aesthetics	Good	National	High	Low	Very High	Negligible	Low Significance
Impacts including		Reduction in water quality	Biodiversity and aesthetics	Good/Fair	Regional	Medium	Low	Medium	Minor	Insignificant
Mitigation	River Sow	Change in flow conditions	Large water course and flood plain	Good/Fair	Regional	Medium	Low	Medium	Minor	Insignificant
		Change in flow conditions due to viaduct	Flood plain	Good/Fair	Regional	Medium	Low	Medium	Moderate	Low Significance
	Groundwater	Reduction in the water quality	Groundwater contamination of base flow to Doxey Drain.	Unknown	Local	Low	Medium	Low	Negligible	Insignificant
	Groundwater	Reduction in in in infiltration and flow of groundwater	Minor contribution of base flow to water courses	Medium	Local	Low	Medium	Low	Negligible	Insignificant

Reference Sources:

- Data from the Environment Agency consisting of flow and water quality data for a number of watercourses, groundwater vulnerability maps, flood maps and the identification of Source Protection Zones (SPZs).
- The Water Environment Sub-Objectives, Tag Unit 3.3.11, June 2003, Department for Transport, Transport Analysis Guide (TAG).

Summary Assessment Score: Neutral impacts for quality in the water environment with the implementation of good practice mitigation measures and Slight Adverse impacts for hydrological changes within the SSSI, water courses and groundwater and also for quality changes within the SSSI.

Qualitative Comments: The Scheme does not affect any Source Protection Zones in the area, although it does affect the floodplains of the water courses to which the road scheme crosses. At three locations work across the watercourses would be within the flood plain. The increase in impermeable surface area will cause run-off rates from the road's surface to increase but would be managed within the road drainage system.

The Slight Adverse Impact score has been achieved by implementing mitigation measures so that no discharges from the road scheme will be made to water courses within the SSSI however implications on the SSSI as a result of the construction and operation of the road scheme need further consideration in terms of the mitigation measures to be employed in order to minimise such risks.

Once hydrological, hydrogeological and geotechnical information from ground investigations has been obtained, the level of impact and potential mitigation measures will be reassessed during the next stage of assessment

TAG Worksheet: Journey Quality

Factor	Sub-factor	Better	Neutral	Worse
Traveller Care	Cleanliness		n/a	
	Facilities		n/a	
	Information		✓	
	Environment		n/a	
Travellers' Views	-	✓		
Traveller Stress	Frustration	✓		
	Fear of potential accidents	✓		
	Route uncertainty		✓	

Reference Source(s): Webtag 3.3.13 and Stafford Saturn Model

Summary assessment score: Large Beneficial

Qualitative comments: Frustration will be reduced as the road layout and geometry, condition of the network and ability to make good progress along a route are all better with the Green route in place. Fear of potential accidents will also reduce as the new highway will be built to superior design standards and avoid areas where there is a high pedestrian movement. As the AADT for this route is over 10,000, the summary assessment score is large beneficial.

TAG Worksheet: Security

Security Indicator	Relative importance (High/Medium/Low)	Without strategy (Poor/Moderate/High)	With strategy (Poor/Moderate/High)
Site perimeters, entrances and exits	N/A	N/A	N/A
Formal surveillance	Medium	High	High
Informal surveillance	Medium	Moderate	Moderate
Landscaping	Medium	Moderate	Moderate
Lighting and visibility	High	High	High
Emergency call	N/A	N/A	N/A
Pedestrian and cyclist facilities	Medium	High	High

Approximate numbers of users affected:

Overall assessment of impact on Security sub-objective (slight/moderate/large positive/negative or neutral): **Neutral**

Reference Source(s): Webtag 3.4.2

Qualitative comments: Existing routes are well lit with good informal surveillance as part of the town centre. New route will be designed to a high standard as regards security with good informal surveillance as passing through existing residential and retail areas.

TAG worksheet: Severance

	Population Affected												
Change in Severance	Chell Road	Rail Station	Doxey Road adjacent to rail bridge	Doxey Road adjacent to Castletown (North of Sainsburys roundabout)	Grey Friars Place	A34 Foregate Street/ Grey Friars Place junction	A34 Grey Friars/ Foregate Street/ Browning Street	West Way/ A518 Newport Road	Total Affected				
Large negative													
Moderate negative													
Slight negative			85						85				
Neutral			419			1693	908		3020				
Slight positive	5624	2415							8039				
Moderate positive													
Large positive													

Reference Source

Webtag Unit A4.1 Social Impact Appraisal, Stafford Saturn Model and pedestrian count data.

All pedestrian data quoted is total 12 hour flows (0700 - 1900) on a weekday. Surveys were undertaken between March and July 2014.

Summary Assessment Score

Large beneficial		

Qualitative Comments

As the net total number of people for whom severance will reduce is greater than 1000, there is a large beneficial change in severance

Worksheet Distributional Impacts: Output Summary

Social group and ame	nities indicators		User Benefits	Noise	Air quality	Accidents	Security	Severance	Accessibility	Affordability
		0-20%	✓	0	0					✓
	Income distribution	20-40%	//	///	XX					/ /
	quintiles	40-60%	//	XXX	XX					11
		60-80%	✓	0	0					✓
		80-100%	///	///	XX					///
Resident population in	Children (<16)		N/A	N/A	√ √	N/A	//	N/A		
the impact area	Young Males					√ √				
	Older people					XX	N/A	//	N/A	
	People with a disability	,					N/A	4	N/A	
	Black Minority Ethnic								N/A	
	No car households							√ √	N/A	
	Households with deper	ndent children							N/A	

Worksheet: SDI Matrix

	Distribut	ional impa	ct of incon	ne dep	orivation		Are the impacts distributed evenly?	ed					
	0-20% (1)	20-40% (2)	40-60% (3)	60-80	0% 80 (5)	-100%		Key impacts	- Qualitati	ive staten	nents		
User benefits	√	/ /	//	✓		///	No	There are overall net benefits for all quintiles. The value of user benefits for quintiles 1 and 4 are smaller than expected. The value of user benefits for quintiles 2 and 3 are in line with expected. The value of user benefits for quintile 5 is more than expected.					
Noise	0	///	xxx	0)	xxx	No	The most deprived income quintile and quintile 4 do not experience any change in noise, whilst the least deprived quintile and quintile 3 experience higher than expected proportion of dis-benefits. Significant benefits are experienced by quintile 2.					
Air quality	0	xx	xx	0)	XX	No		prived quint			ty in income quintiles 1 and 4. nd 3 experience dis-benefits in	
Affordability	√	44	44	✓		/ / /	No	benefits for q affordability b	uintiles 1 are	nd 4 are s quintiles 2	maller tha and 3 are	s. The value of affordability n expected. The value of e in line with expected. The value than expected.	
Accessibility	N/A	N/A	N/A	N/	/A	N/A	N/A				N/A		
AST entry		-1	I.					1					
	Social	groups						User groups	;			Qualitative statement	
Impact	Children & you people		No househ	car olds	Women	Disabled	BME	Pedestrians	Cyclists	Motor- cyclists	Young male drivers	(including any impact on residential population AND identified amenities)	
Noise	N/A											There are two schools within the noise impact area, and not a significant proportion of under 16 year olds.	

Air Quality	N/A									There are no schools within the air quality impact area, and not a significant proportion of under 16 year olds.
Accidents	11	××				√ √	√ √	0	√ √	Children are likely to benefit from reduced accident rates although older people may not. Pedestrians, cyclists and young male drivers will also benefit. This is particularly relevant for pedestrians and cyclists as currents rates are slightly higher than expected for these groups.
Security	N/A	N/A		N/A						N/A
Severance	√ √	√ √	✓ ✓		√ √					There is reduced severance for all vulnerable users in the town centre where there are high pedestrian movements. This outweighs any severance created in residential areas where there are likely to be higher proportions of the vulnerable users (particularly no car households), but at locations with lower pedestrian
										activity.

Key: ✓✓✓ = Large Beneficial

✓ = Moderate Beneficial

✓ = Slight Beneficial

0 = Neutral

× = Slight Adverse

×× = Moderate Adverse

××× = Large Adverse

Worksheet: Distributional Impacts: User Benefits

	Income Qui	ntile				Total
	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5	. i otai
Total population	219,298	230,217	222,293	286,013	241,102	1,198,924
Proportion of overall population	18.3%	19.2%	18.5%	23.9%	20.1%	-
Overall net user benefits	£1,332,212	£9,916,940	£7,048,266	£2,708,343	£22,602,602	£43,608,362
Distribution of Overall benefits	3.1%	22.7%	16.2%	6.2%	51.8%	-
Sum of benefits	£1,357,560	£9,939,051	£7,105,218	£2,777,496	£22,718,367	£43,897,692
Distribution of benefits	3.1%	22.6%	16.2%	6.3%	51.8%	-
Sum of disbenefits	-£25,348	-£22,111	-£56,952	-£69,153	-£115,765	-£289,330
Distribution of disbenefits	8.8%	7.6%	19.7%	23.9%	40.0%	-
Assessmen t	✓	11	11	~	111	
Key to indivi	dual assessn	ent of each l	ncome quintil	e		
Beneficial and population	d 5% greater (d	or more) than t	he proportion o	of the group in t	he total	Large Beneficial
Beneficial and	d in line (+/-5%) with the prop	ortion of the gr	oup in the total	population	Moderate Beneficial
Beneficial and population	d 5% smaller (or less) than th	e proportion of	the group in th	e total	Slight Beneficial
There are no		Neutral				
A dis-benefit v	up in the total	Slight Adverse				
A dis-benefit v	which is in line	(+/-5%) with th	he proportion o	f the group in t	he total	Moderate Adverse
A dis-benefit v	which is 5% gr	eater (or more) than the prop	ortion of the gr	oup in the total	Large Adverse

Worksheet Distributional Impacts: Noise

	IoD Incor	IoD Income Domain								
	Most dep									
	Least de		T	T	T					
	0-20%	20-40%	40-60%	60-80%	80-100%	Total				
Population in each group with increased noise	0	166	88	0	322	575				
Population in each group with decreased noise	0	284	0	0	149	433				
Population in each group with no change in noise	0	2,394	1,684	358	1,006	5,441				
Net no of Winners / Losers in each group	0	119	-88	0	-173	-142				
Net winners/losers in each area as percentage of total	0.0%	-83.9%	61.9%	0.0%	122.0%	100.0%				
Share of total population in the impact area	0.0%	44.1%	27.5%	5.5%	22.9%	100.0%				
Assessment	0	444	XXX	0	XXX					

Worksheet Distributional Impacts: Air Quality

	IoD Inco Most d Least d		Total			
	0-20%	20-40%	40-60%	60-80%	80-100%	
Properties in each group with increase	0	1,252	894	0	371	2,517
Properties in each group with decrease	0	383	234	0	145	762
Properties in each group with no change	0	0	0	0	0	0
Net no of Winners / Losers in each group	0	-869	-660	0	-226	-1,755
Net winners/losers in each area as percentage of total	0.0%	49.5%	37.6%	0.0%	12.9%	100.0%
Share of total population in the impact area	0.0%	49.9%	34.4%	0.0%	15.7%	100.0%
Assessment	0	xx	xx	0	xx	

Worksheet for Distributional Impact: Personal Affordability

			Income Quint	ile			Total
	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quinti	le 5	Total
Total population	219,298	230,217	222,293	286,013	241,1	02	1,198,924
Proportion of population	18.3%	19.2%	18.5%	23.9%	20.1	%	-
Overall net benefits	£25,375	£386,988	£397,408	£199,581	£1,232	2,520	£2,241,873
Distribution of net benefits	1.1%	17.3%	17.7%	8.9%	55.0	%	-
Sum of benefits	£33,203	£416,155	£421,137	£230,164	£1,317,877		£2,418,537
Distribution of benefits	1.4%	17.2%	17.4%	9.5%	54.5%		-
Sum of disbenefits	-£7,828	-£29,167	-£23,729	-£30,584	-£85,356		-£176,664
Distribution of disbenefits	4.4%	16.5%	13.4%	17.3%	48.3	%	-
Assessment	√	11	11	√	11	· /	
Key to individua	l assessment	l of each Income	quintile				
Beneficial and 5%	% greater (or mo	re) than the prop	oortion of the gro	up in the total pop	oulation	Large	Beneficial
Beneficial and in	line (+/-5%) with	the proportion o	of the group in th	e total population	,	Mode	erate Beneficial
Beneficial and 5%	6 smaller (or les	s) than the propo	ortion of the grou	p in the total pop	ulation	Slight	t Beneficial
There are no use	r benefits or dis-	benefits experie	nced by the grou	ıp		Neuti	ral
A dis-benefit whic population	ch is 5% smaller	(or less) than th	e proportion of ti	he group in the to	tal	Slight	t Adverse
A dis-benefit whic	ch is in line (+/-5	%) with the prop	ortion of the gro	up in the total pop	oulation	Mode	erate Adverse
A dis-benefit whice population	ch is 5% greater	(or more) than t	he proportion of	the group in the t	otal	Large	e Adverse